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ABSTRACT 

Any counting system is prone to recording errors including underreporting and 

overreporting. Ignoring the misreporting pattern in count data can give rise to bias in the 

estimation of model parameters. Accordingly, Poisson, negative binomial and generalized 

Poisson regression have been expanded in some instances to capture reporting biases. 

However, to our knowledge, no program has been developed to allow users to apply all 

of these models when needed. In the first part of the dissertation, we review the available 

models for underreported counts and develop a Stata command to estimate Poisson, 

negative binomial and generalized Poisson regression models for underreported data. 

Although considerable research has been devoted to underreporting models, less 

attention has been given to inflated counts. Based on the structural model proposed by Li 

et al. (2003), we will develop two models applicable to potentially misreported data. The 

first model covers situations where both the reported counts and the true counts follow a 

Poisson distribution. The second model would be relevant to cases where the actual-

unobserved counts are assumed to be from a generalized Poisson distribution and the 

reported counts are from a Poisson distribution.  

The proposed models adjust for both overreporting and underreporting. Our 

approach allows users to specify the individual’s characteristics that contribute to 

misreporting. With only observed counts at hand, our proposed models estimate the 

proportions of under/overreporting conditionally.
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CHAPTER 1 

INTRODUCTION 

 There are many contexts in which the outcome of interest or the dependent 

variable is a count, for example, the number of occurrences of an event. Inherently, a 

count variable only takes non-negative integer values. As a result, the distribution of the 

outcome is usually positively skewed (especially when the mean is small). Similar to 

classic regression, in count data analysis we wish to explain the outcome of interest 

through a set of covariates. However, since one of the main assumptions of linear models 

is heteroscedasticity of the error, standard regression models cannot be applied to count 

data.  

Regression models for counts, like other limited or discrete dependent variable 

models such as the logit and probit, are non-linear with many properties and special 

features intimately connected to discreteness and non-linearity (Cameron & Trivedi, 

2001). Some of these regression models have been applied to data on number of live 

births over a specified age interval of the mother (Winkelmann, 1995), number of 

accidents experienced by an airline over some period (Rose, 1990) or number of times 

that individuals utilize a health service, such as number of visits to a doctor in the past 

year (Cameron, Trivedi, Milne, & Piggott, 1988). In most of these cases, the number of 

counts could have been potentially overreported, underreported or correctly reported. In 

the case of the counts having been correctly reported, the appropriate count data 

regression model such as negative binomial, Poisson and generalized Poisson can be
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applied on such data. In real life there is potential of misreporting and it is necessary to 

check count data for this kind of reporting (Pararai, Famoye, & Lee, 2010). 

Underreporting is a problem in data collection that occurs when the counting of 

some event is for some reason incomplete. Any reporting or counting system is prone to 

such errors in recording. The reasons may be quite different in the various fields of 

application like public health, criminology, actuarial science or production. In public 

health we have reporting systems for infectious diseases like HIV or chronic diseases like 

diabetes in which recording failures may occur as result of diagnostic errors or patients 

avoiding diagnosis. The same holds for traffic accidents with minor damage. Insurance 

companies are faced with an unknown number of total claims, as some claims are made 

with a delay that may be as long as five years. An example from industrial production is 

the number of products that are broken within a certain period, typically the warranty 

period. To know this number is important for quality management. Only the number of 

returned products is known, but the true total number includes also those goods that are 

not returned by customers. In all these cases reporting systems give lower counts than the 

actual number of events. Therefore, underreporting is a widespread phenomenon and the 

estimation of the total number of cases is of particular interest (Neubauer, Duras, & 

Friedl, 2010). 

Overreporting in registration systems occurs when the reported number of events 

is higher than the actual counts. Depending on the field of application, various factors 

might play a role in overreporting of an event. In public health, a physicians’ mistakes in 

the diagnostic process could result in over reporting of a specific disease. An example 

from survey research could be overreporting hand washing behavior in hospital settings 
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(Contzen, De Pasquale, & Mosler, 2015). Two different explanations of overreporting 

have been tendered with regard to survey responses. One explanation considers 

inaccurate memory function or recall errors and the second is social desirability which 

has been claimed to be the main cause of inflated self-reports (Contzen et al., 2015). In 

general, research participants want to respond in a way that makes them look as good as 

possible. Thus, they tend to under-report behaviors deemed inappropriate by researchers 

or other observers, and they tend to over-report behaviors viewed as appropriate 

(Donaldson & Grant-Vallone, 2002).  

Several methods have been proposed by various authors to address the 

misreporting problem in count data (Fader & Hardie, 2000; Mukhopadhyay & Trivedi, 

1997; Neubauer & Djuraš, 2008, 2009; Winkelmann, 1996). While most of the available 

methods focus on adjusting for underreported counts, there exist a couple of models that 

also incorporate overreported data. 

 In this dissertation, I will review the available models for underreported counts in 

Chapter 2 and present Stata estimation commands for each, followed by a simulation 

study to show the performance of the program. In Chapter 3, two models for misreported 

counts will be introduced, a Poisson mixture model and a generalized Poisson mixture 

model which adjust for both underreporting and overreporting. The performance of the 

proposed models will be examined through a simulation studies. A real data analysis will 

be carried out in Chapter 4 using EBAN study data, An HIV/STD Intervention for 

African American Couples. I conclude the dissertation in Chapter 5 with future research 

ideas and applications.
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CHAPTER 2 

REGRESSION MODELS FOR UNDERREPORTED COUNTS 

Underreported count data are generated when only a fraction of the actual events 

of interest are reported. Let 𝑦𝑖
∗ denote the total number of events during a fixed time 

period 𝑡 for individual 𝑖. Suppose that 𝑦𝑖 , the observed counts, conditional on 𝑦𝑖
∗ is 

characterized by a conditional binomial distribution given by  

 𝑃(𝑦𝑖|𝑦𝑖
∗ , 𝑝𝑖) =

𝑦𝑖
∗!

(𝑦𝑖
∗ − 𝑦𝑖)! 𝑦𝑖!

 𝑝𝑖
𝑦𝑖  (1 − 𝑝𝑖)

𝑦𝑖
∗−𝑦𝑖  (2.1) 

where 𝑝𝑖 gives the individual probability of reporting an event. This probability is 

assumed to be constant and identical for all events and independent of the history of the 

process. A given number of the reported events can then arise in many ways. For 

instance, if 𝑦𝑖 = 𝑦𝑖
∗ then all the events are accurately reported. Alternatively, 𝑦𝑖 = 𝑦𝑖

∗ − 𝑐 

where 0 < 𝑐 < 𝑦𝑖
∗ can be any number of non-reported events. Most of the models for 

underreported count data work within this basic framework.  

2.1 POISSON MODEL FOR UNDERREPORTING 

Winkelmann (Winkelmann, 1996) proposed a mixture of the Poisson and the 

binomial distributions to take underreporting into account. In this misture model, the true 

number of events, 𝑦𝑖
∗ , is assumed to have a Poisson distribution with conditional mean 

parameterized as
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 𝐸(𝑦𝑖
∗|𝒙𝑖) = 𝜇𝑖 = exp(𝒙𝑖𝜷)   ,    𝑖 = 1, … , 𝑛 (2.2) 

where 𝜷 = (𝛽1, … , 𝛽𝑘)´ is a vector of unknown regression coefficients and                  

𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑘) includes covariates of interest. Assuming a binomial distribution for 

the observed counts, conditional on 𝑦𝑖
∗ (2.1), the marginal distribution of the number of 

reported events 𝑦𝑖 can be calculated as 

𝑃(𝑦𝑖 = 𝑦) = ∑
𝜇𝑦∗

 𝑒−𝜇

𝑦∗!

𝑦∗!

(𝑦∗ − 𝑦)!
𝑝𝑦(1 − 𝑝)𝑦∗−𝑦

∞

𝑦∗≥𝑦

 

 =
𝑒−𝜇𝑝 (𝜇𝑝)𝑦

𝑦!
 (2.3) 

Hence, the number of observed events is again Poisson distributed with mean 𝜆𝑖 = 𝜇𝑖𝑝𝑖.  

 According to Winkelmann (Winkelmann, 1996), if we can capture the structure of 

the relationship between the observed counts and the actual counts, i.e. the cross-

sectional heterogeneity, then the parameters 𝜇 and 𝑝 are both identifiable. Once the 

model is specified, it is often possible to make conditional statements about each 

individual’s unobserved but true number of events based on their reported counts. There 

are three conditional distributions that may be of interest:  

 First is 𝑃(𝑦∗ = 𝑎|𝑦 = 𝑏), i.e. the probability of someone having been involved 

in 𝑎 events, conditional on the fact that they reported 𝑏 such of events.  

 Second is 𝑔(𝑝|𝑦 = 𝑏), i.e. the distribution of one’s reporting probability given 

that they reported 𝑏 events. 
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 The third is 𝑓(𝜇|𝑦 = 𝑏), i.e. the distribution of one’s true rate parameter, 

conditional on reporting 𝑏 events.  

Neubauer and Djuraš (Neubauer & Djuraš, 2008, 2009) extended the binomial 

model for undercounts to the case where both parameters of the binomial model are 

treated as random. They suggested using mixed models for undercounts to allow for 

larger variability in the response, i.e. allowing for more overdispersion. 

Winkelmann (Winkelmann, 1996) also considered a hierarchical Bayesian approach 

where the actual counts are modeled through a Poisson regression with a multivariate 

normal prior on the covariate coefficients and a uniform prior is placed on the reporting 

probability 𝑝. “The problem with this approach is that it is intractable to analytically 

derive the marginal posterior distribution for the parameters of interest and so 

computationally intensive Markov Chain Monte Carlo (MCMC) methods were required 

to make the inference of interest” (Fader & Hardie, 2000). 

As an alternative, I used a maximum likelihood method for the estimation process. 

According to (2.3), the number of observed counts is Poisson distributed with mean   

𝜆𝑖 = 𝜇𝑖𝑝𝑖 so a realistic model is then given by  

𝜇𝑖 = exp(�́�𝑖 𝜷)      𝑎𝑛𝑑      𝑝𝑖 =
exp(�́�𝑖𝜸)

1 + exp(�́�𝑖𝜸)
 

where 𝒙𝑖and 𝒛𝑖 are two sets of covariates defining the marginal means, 𝜇𝑖, and the 

reporting probability, 𝑝𝑖, respectively. 𝜷 and 𝜸 are the unknown parameters to be 

estimated The likelihood contribution of the 𝑖-th observation is given by 

 𝐿(𝛽, 𝛾|𝑦𝑖, 𝑥𝑖 , 𝑧𝑖) =
𝑒−(𝜇𝑖(𝛽) 𝑝𝑖(𝛾)) (𝜇𝑖(𝛽) 𝑝𝑖(𝛾))

𝑦𝑖

𝑦𝑖!
 (2.4) 
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If we imagine a model in which both 𝒙 and 𝒛 consist of a constant term, then there is 

an infinite number of solutions for which the mean of the true counts is equal to  

exp(𝛽0)
exp(𝛾0)

1 + exp(𝛾0)
 

Therefore, for identifiability, z cannot contain a constant term. If we look further at a 

single common binary covariate, it is just as easy to see there is no identifiable solution. 

Thus, the covariates in 𝒛 and 𝒙 cannot overlap.  

We developed a Stata command named “undct” for performing underreporting count 

data regression. The general syntax of the program is 

undct depvar [indepvars] [if] [in] [weight], 

               under (varlist [, offset (varname)]|_cons) [options] 

where the distribution of the dependent variable can be specified in the [options]. A 

Poisson-binomial model can be developed by choosing a Poisson distribution for the 

outcome of interest. In the upcoming section, I will illustrate the undct command for 

fitting an underreported count regression model to simulated data. 

2.2 SIMULATION STUDY FOR POISSON UNDERCOUNT MODEL 

 We conducted a simulation study to examine the performance of the Poisson-

binomial mixture model compared with that of the standard Poisson model. For the 

parameters to be identifiable, we used two sets of disjoint variables for 𝒙 and 𝒛. In every 

iteration, a data set of size 1000 was synthesized, first a Poisson model with covariates in 

𝒙 was fit and then a Poisson-binomial mixture model was applied to the synthesized data. 

These procedures were repeated 100 times independently for each of the following 

scenarios. 
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 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.5, 𝑧1 is a random 

uniform variable on (0,1) and 𝑧2 follows a binary distribution with 𝑝 = 0.3. 

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we used the following parameter values: 

𝛽0 = 1.5, 𝛽1 = −0.5, 𝛽2 = −1, 𝛾1 = 0.3, 𝛾2 = 0.7 

 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.5, 𝑥3 is Poisson 

distributed with mean 2, 𝑧1 is a random uniform variable on (0,1), 𝑧2 follows a 

binary distribution with 𝑝 = 0.3. 

𝜇𝑖 = exp(𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we used the following parameter values: 

𝛽1 = 0.4,  𝛽2 = 0.8, 𝛽3 = −0.3, 𝛾1 = −0.5, 𝛾2 = 1.5 

The results are summarized in Tables 2-1 and 2-2. 

Table 2.1 Simulation results for Poisson model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1.5 0.961 0.030 0.538 𝛽1 = 0.4 0.343 0.039 0.056 

𝛽1 = −0.5 -0.502 0.021 0.002  𝛽2 = 0.8 0.394 0.054 0.405 

𝛽2 = −1 -0.992 0.052 -0.007 𝛽3 = −0.3 -0.440 0.027 0.140 

 

In the first simulation scenario, the logarithm of the marginal means was explained 

through a constant and two regressors, 𝑥1 and 𝑥2. The reporting probability of each event  
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Table 2.2 Simulation results for Poisson undercount model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1.5 1.502 0.057 -0.002 𝛽1 = 0.4 0.396 0.044 0.003 

𝛽1 = −0.5 -0.501 0.021 0.001  𝛽2 = 0.8 0.794 0.070 0.005 

𝛽2 = −1 -0.991 0.054 -0.008 𝛽3 = −0.3 -0.299 0.030 0.000 

𝛾1 = 0.3 0.273 0.195 0.026 𝛾1 = −0.5 -0.479 0.216 -0.020 

𝛾2 = 0.7 0.708 0.177 -0.008 𝛾2 = 1.5 1.545 0.433 -0.045 

 

was also assumed to be related to the explanatory variables 𝑧1 and 𝑧2 through a logit link 

function. Both, the classic Poisson regression and the Poisson-binomial mixture model 

provided good estimates of the effects of 𝑥1 and 𝑥2 on the observed counts. However, this 

was not the same for the intercept. The standard Poisson model estimated the baseline 

incidence rate ratio (IRR) to be exp(0.961) = 2.614, while the actual value was 

exp(1.5) = 4.481. In contrast, the undercount model was able to precisely capture the 

effects of all covariates. This suggests that, when underreporting is present, the Poisson 

regression is likely to be misleading due to biased results it provides for the model’s 

intercept.   

In the second simulation scenario, we were interested to compare the two 

discussed regression approaches when the constant is excluded from the models. So, we 

related the true means to three regressors and we considered two covariates for 

explaining the reporting probability. Not surprisingly, all the estimated coefficients from 

the Poisson model were biased. The IRRs produced by this model were 1.409, 1.482 and 
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0.644 for 𝑥1, 𝑥2 and 𝑥3 respectively when the actual values were 1.491, 2.225 and 0.740. 

On the other hand, the undercount model estimated the IRRs as 1.485, 2.212 and 0.741.  

On the basis of the simulation results reported in Tables 2.1 and 2.2, we conclude 

that the conventional Poisson regression can suffer from model misspecification when 

used to model underreported data. The Poisson-binomial mixture model, on the other 

hand, can provide reliable estimates in this context. They can also provide information on 

the association of potential covariates with reporting probability of the events.  

2.3 NEGATIVE BINOMIAL MODEL FOR UNDERREPORTING 

One of the most important features about Poisson regression is the equidispersion 

assumption. In research, however, collected count data often displays heterogeneity 

across observational units that exceed the assumed conditional variance. It can be shown 

that wrongly assuming equidispersion might affect the robustness of estimators produced 

by Poisson model which consequently leads to misleading inferences about the 

regression. Among models that have been introduced to overcome this problem, the 

negative binomial regression is the most commonly used alternative to the Poisson 

regression when overdispersion is present. 

According to Winkelman (Winkelmann, 1996), the Poisson-binomial model for 

underreporting and the Poisson model with unobserved heterogeneity share similar 

structural properties in the sense that random underreporting also leads to overdispersion 

in the observed counts. However, it is hard to disentangle overdispersion due to 

underreporting from that of unobserved heterogeneity. A negative binomial regression 

that can further capture underreporting can be a natural remedy to attack this problem. 
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In 1997, Mukhopadhay (Mukhopadhyay & Trivedi, 1997) extended the model 

proposed by Winkelmann (Winkelmann, 1996) to situations where the true counts follow 

a negative binomial Distribution. In the underreporting context, the construction of the 

negative binomial model can be made based on the following assumptions: 

i. For each individual, the actual number of events, 𝑦𝑖
∗, in a unit time interval is 

Poisson distributed with mean 𝜇𝑖  

 𝑃(𝑌∗ = 𝑦𝑖
∗|𝜇𝑖) =

𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖
∗

𝑦𝑖
∗!

        , 𝑖 = 1, … , 𝑛 (2.5) 

ii. The distribution of 𝜇𝑖 across individuals is gamma with parameters (𝜃, 𝜃) 

 𝑓(𝜇𝑖) =
𝜃𝜃

Γ(𝜃)
𝜇𝑖

𝜃−1𝑒−𝜃𝜇𝑖           , 𝜃 > 0 (2.6) 

iii. Conditional on 𝑦𝑖
∗, the observed counts have a binomial distribution with 

parameters (𝑦𝑖
∗, 𝑝𝑖) 

 𝑃(𝑌 = 𝑦𝑖|𝑦𝑖
∗, 𝑝𝑖) = (

𝑦𝑖
∗

𝑦𝑖
) 𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)
𝑦𝑖

∗−𝑦𝑖 (2.7) 

 

iv. An individual’s reporting probability, 𝑝𝑖, is independent of their marginal 

mean, 𝜇𝑖 . 

Combining the assumptions (i) and (ii) gives us the marginal distribution of the actual 

counts which is a negative binomial with mean 𝜇𝑖 and dispersion parameter 𝛼, where 𝛼 =

1
𝜃⁄  

𝑃(𝑌∗ = 𝑦𝑖
∗) = ∫ 𝑃(𝑌∗ = 𝑦𝑖

∗|𝜇𝑖) 𝑓(𝜇𝑖) 𝑑𝜇𝑖

∞

0

= 
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Γ(𝑦𝑖

∗ + 𝛼−1)

𝑦𝑖
∗!  Γ(𝛼−1)

(
𝛼−1

𝛼−1 + 𝜇𝑖
)

𝛼−1

(
𝜇𝑖

𝛼−1 + 𝜇𝑖
)

𝑦𝑖
∗

 (2.8) 

In a similar manner, combining the result (2.8) with assumption (iii) give us the marginal 

distribution of the observed counts. Mukhopadhay (Mukhopadhyay & Trivedi, 1997) has 

derived this distribution as 

 
𝑃(𝑌 = 𝑦𝑖) =

Γ(𝑦𝑖 + 𝛼−1)

Γ(𝑦𝑖 + 1) Γ(𝛼−1)
 (

𝛼−1

𝛼−1 + 𝑝𝑖𝜇𝑖
)

𝛼−1

(
𝑝𝑖𝜇𝑖

𝛼−1 + 𝑝𝑖𝜇𝑖
)

𝑦𝑖

 
(2.9) 

 

Thus, the marginal distribution of the observed counts is again negative binomial with 

mean and variance equal to 𝑝𝑖𝜇𝑖 and 𝑝𝑖𝜇𝑖(1 + 𝛼𝑝𝑖𝜇𝑖).  

Similar to the Poisson-binomial mixture model discussed in section 2.1, we can 

model 𝜇𝑖 and 𝑝𝑖 through some explanatory variables. Let 𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑘) be a set of 

covariates defining the marginal means, 𝜇𝑖, and 𝒛𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑙) be a separate set of 

regressors affecting the reporting probability, 𝑝𝑖, then 

𝜇𝑖 = exp(𝒙𝑖 𝜷)     𝑎𝑛𝑑      𝑝𝑖 =
exp(𝒛𝑖𝜸)

1 + exp(𝒛𝑖𝜸)
 

where 𝜷 and 𝜸 are the unknown parameters to be estimated. Maximum likelihood 

methods can be used for the estimation purposes. 

I use the undct command introduced in Section 2.1 for estimating the negative 

binomial undercount model. The general syntax of the program is given by 

undct depvar [indepvars] [if] [in] [weight], 

               under (varlist [, offset (varname)]|_cons) [options] 

where the distribution of the dependent variable should be specified as negative binomial 

in the [options]. 
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2.4 SIMULATION STUDY FOR NEGATIVE BINOMIAL MODEL FOR 

UNDERREPORTED COUNTS 

 We conducted a simulation study to examine the performance of the negative 

binomial undercount model compared with that of the standard negative binomial 

regression. For the parameters to be identifiable, we used two non-overlapping set of 

variables for 𝒙 and 𝒛. In every iteration, a data set of size 10,000 was synthesized. First a 

negative binomial model with covariates in 𝒙 was fit, and then a negative binomial 

undercount model was applied to the synthesized data. These procedures were repeated 

100 times independently for each of the following scenarios: 

 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.8, 𝑧1 is a random 

uniform variable on (0,1) and 𝑧2 follows a binary distribution with 𝑝 = 0.4. We 

chose the dispersion parameter, 𝛼, to be equal to 0.3.  

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we have used the following parameter values: 

𝛽0 = 1.3, 𝛽1 = −0.4, 𝛽2 = −0.7, 𝛾1 = 0.5, 𝛾2 = 0.9 

 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.8, 𝑥3 is Poisson 

distributed with mean 3, 𝑧1 is a random uniform variable on (0,1), 𝑧2 follows a 

binary distribution with 𝑝 = 0.4. We chose the dispersion parameter, 𝛼, to be 

equal to 0.3.  

𝜇𝑖 = exp(𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we have used the following parameter values: 
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𝛽0 = −0.6,  𝛽1 = 1.1, 𝛽2 = 0.3, 𝛾1 = −0.5, 𝛾2 = 1.5 

The results are summarized in Tables 2-3 and 2-4. In the first simulation scenario, 

the exponential function was used as a link between the marginal means and the 

covariates 𝑥1 and 𝑥2. The reporting probability of each event was also regressed on 

explanatory predictors 𝑧1 and 𝑧2 through a logit link function. Standard negative binomial 

model provided accurate estimates of both the dispersion parameter and the effects of 𝑥1 

and 𝑥2 on the observed counts. But, the estimated value for the intercept was biased. 

Based on the NB model we predicted the baseline incidence rate to be exp(0.855)=2.351 

while the actual value was 3.669.  On the other hand, the negative binomial undercount 

model was able to accurately estimate all coefficients and further provide insight into 

revealing the underlying factors that contribute to underreporting. This suggests that, 

when underreporting is present, the negative binomial regression might lead to 

misleading inferences due to biased estimates it produces for the model’s intercept.   

Table 2.3 Simulation results for negative binomial model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1.3 0.855 0.021 0.445 𝛽1 = −0.6 -0.579 0.008 -0.021 

𝛽1 = −0.4 -0.399 0.009 -0.001  𝛽2 = 1.1 0.723 0.014 0.377 

𝛽2 = −0.7 -0.701 0.024 0.001 𝛽3 = 0.3 0.246 0.003 0.054 

𝛼 = 0.3 0.327 0.014 -0.027 𝛼 = 0.3 0.414 0.009 -0.114 

 

In the second simulation scenario, we were interested to compare the performance of 

standard and undercount negative binomial models in the absence of an intercept. To do  
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Table 2.4 Simulation results for negative binomial undercount model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1.3 1.305 0.037 -0.005 𝛽1 = −0.6 -0.600 0.007 0.000 

𝛽1 = −0.4 -0.400 0.009 0.000  𝛽2 = 1.1 1.100 0.014 0.000 

𝛽2 = −0.7 -0.701 0.023 0.001 𝛽3 = 0.3 0.300 0.003 0.000 

𝛾1 = 0.5 0.485 0.122 0.015 𝛾1 = −0.5 -0.503 0.048 0.003 

𝛾2 = 0.9 0.890 0.096 0.010 𝛾2 = 1.5 1.492 0.074 0.008 

𝛼 = 0.3 0.298 0.013 0.002 𝛼 = 0.3 0.299 0.008 0.001 

 

so, we related the true means to three regressors and we considered two covariates for 

explaining the reporting probability. Looking at Table 2.3, the results from the negative 

binomial model are not satisfactory. While the estimated coefficients for 𝑥1 and 𝑥3 are 

close to their actual values, the estimates for 𝛽2 and 𝛼 are both biased. Exponentiating the 

coefficients, we can better see the amount of bias in incidence rate which is a standard 

tool for interpreting the results in count regression. The Incidence rate ratios 

corresponding to 𝑥1, 𝑥2 and 𝑥3 were estimated as 0.560, 2.060 and 1.278 when the actual 

values were 0.548, 3.004 and 1.349. One might argue that the NB model still seems to be 

fine making inferences about incidence rate ratios considering the fact that not all the 

estimates were biased. The problem is that in practice it is unclear which effects are going 

to be affected by model inaccuracy. Predicting future outcomes would also be fallacious 

since all estimators, regardless of being biased or not, would have their own share on the 

calculation process and thus the final result would be altered.  
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Unlike the standard negative binomial model, the undercount model was very 

efficient in estimating both dispersion and regression parameters.    

In conclusion, the standard negative binomial regression can suffer from model 

misspecification when used to model underreported data. However, negative binomial 

undercount models can provide reliable estimates in this context. They can further 

provide information on the association of potential covariates with reporting probability 

of the events.  

2.5 GENERALIZED POISSON MODEL FOR UNDERREPORTING 

While Poisson regression is the most convenient method for modeling count data, 

it is often too restrictive to hold on to the assumption that the variance is equal to the 

mean. Frequently, data exhibits an overdispersion pattern, with the variance greater than 

the mean (Ridout & Besbeas, 2004). As we discussed in Section 2.3, negative binomial 

regression can be used as an alternative to Poisson regression when overdispersion is 

present. 

  At the same time, it is recognized that sometimes the variance of the response 

variable is less than mean. This phenomenon has been referred to as underdispersion in 

the literature. Weighted Poisson distributions have been applied by several authors to 

form models that can handle underdispersed count data (Cameron & Johansson, 1997; 

Del Castillo & Pérez-Casany, 1998; Ridout & Besbeas, 2004). Some alternative 

approaches aimed at developing models that accommodate both over- and 

underdispersion have been introduced (Consul & Famoye, 1992; Shmueli, Minka, 

Kadane, Borle, & Boatwright, 2005). Among these, the generalized Poisson regression 
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model has obtained more attention due to its flexibility and convenient properties 

(Famoye, Wulu, & Singh, 2004; Özmen, 2000; Wang & Famoye, 1997). A number of 

extensions to generalized Poisson regression have merged in recent years (Bae, Famoye, 

Wulu, Bartolucci, & Singh, 2005; Czado, Erhardt, Min, & Wagner, 2007; Famoye & 

Wang, 2004). In 2006, Pararai et al. modified the generalized Poisson regression and 

developed a model to capture underreporting when the outcome follows generalized 

Poisson distribution (Pararai, Famoye, & Lee, 2006).  

The following assumptions are used for building the generalized Poisson 

regression model for underreported counts (GPRU) 

i. For each individual, the actual number of events, 𝑦𝑖
∗, in a unit time interval 

has generalized Poisson distribution (GP) with probability function 

 

𝑓(𝑦𝑖
∗, 𝜇𝑖, 𝛼) = 

𝜇𝑖

1 + 𝛼𝜇𝑖
[
𝜇𝑖(1 + 𝛼𝑦𝑖

∗)

1 + 𝛼𝜇𝑖
]

𝑦𝑖
∗−1

exp [
−𝜇𝑖(1 + 𝛼𝑦𝑖

∗)

1 + 𝛼𝜇𝑖
]

1

𝑦𝑖
∗!

   , 𝑦𝑖
∗ = 0,1,2, … 

(2.10) 

where 𝛼 and 𝜇𝑖 represent, respectively, the dispersion parameter and the mean. 

The variance of GP model can be calculated through 𝜇𝑖(1 + 𝛼𝜇𝑖)
2. The Poisson 

distribution is a special case of generalized Poisson distribution and the function 

in (2.10) reduces to Poisson probability function when 𝛼 = 0 (Consul & Famoye, 

1992). 

ii. Conditional on 𝑦𝑖
∗, the observed counts have a binomial distribution with 

parameters (𝑦𝑖
∗, 𝑝𝑖) 
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 𝑃(𝑌 = 𝑦𝑖|𝑦𝑖
∗, 𝑝𝑖) = (

𝑦𝑖
∗

𝑦𝑖
) 𝑝𝑖

𝑦𝑖(1 − 𝑝𝑖)
𝑦𝑖

∗−𝑦𝑖 (2.11) 

iii. An individual’s reporting probability, 𝑝𝑖, is independent of his/her marginal 

mean, 𝜇𝑖 

The marginal distribution of the observed counts can be calculated by combining 

the assumption (i) and (ii). Pararai et al. (Pararai et al., 2006), derived the generalized 

Poisson distribution for underreported counts (GPDU) as 

 

𝑃(𝑌 = 𝑦𝑖) =
𝜇𝑖(1 − 𝑝𝑖)

1 + 𝛼𝜇𝑖
 

× [
𝜇𝑖(1 − 𝑝𝑖 + 𝛼𝑦𝑖)

1 + 𝛼𝜇𝑖
]

𝑦𝑖−1

exp [
−𝜇𝑖(1 − 𝑝𝑖 + 𝛼𝑦𝑖)

1 + 𝛼𝜇𝑖
]

1

𝑦𝑖!
   ,   𝑦𝑖 = 0,1,2, … 

(2.12) 

The mean and variance of GPDU can be obtained by 

 𝐸(𝑌) = 𝐸[𝐸(𝑌|𝑌∗)] = 𝜇(1 − 𝑝) (2.13) 

 𝑉𝑎𝑟(𝑌) = 𝑉[𝐸(𝑌|𝑌∗)] + 𝐸[𝑉(𝑌|𝑌∗)] = 𝜇(1 − 𝑝)[(1 + 𝛼𝜇)2 + 𝑝𝜇] (2.14) 

The marginal means of the true counts, 𝜇𝑖, and the reporting probability 𝑝𝑖 can be 

both estimated through some explanatory variables. Let 𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑘) and 𝒛𝑖 =

(𝑧𝑖1, … , 𝑧𝑖𝑙) be two disjoint sets of covariates, then 𝜇𝑖 and 𝑝𝑖 can be modeled through 

𝜇𝑖 = exp(𝒙𝑖 𝜷)     𝑎𝑛𝑑      𝑝𝑖 =
exp(𝒛𝑖𝜸)

1 + exp(𝒛𝑖𝜸)
 

Where 𝜷 and 𝜸 are the unknown parameters to be estimated.  

Maximum likelihood methods can be used for estimating parameters of 

generalized Poisson regression model for underreported counts (GPRU). 
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I will use the undct command introduced in Section 2.1 for fitting the GPRU 

model. The general syntax of the program would be 

undct depvar [indepvars] [if] [in] [weight], 

               under (varlist [, offset (varname)]|_cons) [options] 

where the distribution of the dependent variable should be specified as generalized 

Poisson in the [options]. 

2.6 SIMULATION STUDY FOR GENERALIZED POISSON REGRESSION 

MODEL FOR UNDERREPORTED COUNTS 

We conducted a simulation study to examine the performance of the GPRU model 

compared with that of the standard generalized Poisson regression. For the parameters to 

be identifiable, we used two non-overlapping set of variables for 𝒙 and 𝒛. In every 

iteration, a data set of size 10,000 was synthesized, first a GPR model with covariates in 

𝒙 were fitted and then a GPRU model were applied to the synthesized data. These 

procedures were repeated 100 times independently for each of the following scenarios: 

 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.5, 𝑧1 is a random 

binary variable with 𝑝 = 0.5, (0,1) and 𝑧2 is a random uniform variable on (0,1). 

We chose the dispersion parameter, 𝛼, to be equal to 0.6.  

𝜇𝑖 = exp(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we have used the following parameter values: 

𝛽0 = 1, 𝛽1 = −0.5, 𝛽2 = 0.5, 𝛾1 = 1.5, 𝛾2 = −0.5 
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 𝑥1 follows a standard normal, 𝑥2 is a binary variable with 𝑝 = 0.8, 𝑥3 is Poisson 

distributed with mean 3, 𝑧1 is a random uniform variable on (0,1), 𝑧2 follows a 

binary distribution with 𝑝 = 0.4. We chose the dispersion parameter, 𝛼, to be 

equal to 0.3.  

𝜇𝑖 = exp(𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖) 

 logit(𝑝𝑖) = 𝛾1𝑧1𝑖 + 𝛾2𝑧2𝑖 

we have used the following parameter values: 

𝛽0 = −0.6,  𝛽1 = 1.1, 𝛽2 = 0.3, 𝛾1 = −0.5, 𝛾2 = 1.5 

The results are summarized in Tables (2-5) and (2-6).  The generalized Poisson 

model provided good estimates of all coefficients except for the intercept which were 

estimated with a bias of size 0.492. Based on this model, we would calculate the baseline 

prevalence rate to be exp (0.508) =1.661, when the true value is exp (1) =2.718. On the 

other hand, the generalized Poisson model for underreported counts were able to 

accurately estimate all coefficients and provide further insight about the underlying 

factors that contribute to underreporting. This suggests that, when underreporting is 

present, the generalized Poisson regression might lead to misleading inferences due to 

biased estimates it produces for the model’s intercept.  In a similar manner, we can 

conclude that the estimates from undercount generalized Poisson model are more 

accurate compared to the ones provided by the standard generalized Poisson regression. 
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Table 2.5 Simulation results for generalized Poisson model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1 0.508 0.026 0.492 𝛽1 = 0.7 0.649 0.007 0.051 

𝛽1 = −0.5 -0.490 0.012 -0.01  𝛽2 = −0.2 -0.253 0.018 0.053 

𝛽2 = 0.5 0.494 0.025 0.006 𝛽3 =0.6 0.535 0.002 0.065 

𝛼 = 0.6 0.613 0.005 -0.013 𝛼 = 0.4 0.514 0.005 -0.114 

 

Table 2.6 Simulation results for generalized Poisson undercount model 

First simulation scenario Second simulation scenario 

True value Mean SD Bias True Value Mean SD Bias 

𝛽0 = 1 0.994 0.037 0.006 𝛽1 = 0.7 0.699 0.006 0.001 

𝛽1 = −0.5 -0.501 0.012 0.001  𝛽2 = −0.2 -0.200 0.013 0.000 

𝛽2 = 0.5 0.504 0.025 -0.004 𝛽3 =0.6 0.600 0.002 0.000 

𝛾1 = 1.5 1.512 0.129 -0.012 𝛾1 = −0.4 -0.401 0.027 0.001 

𝛾2 = −0.5 -0.500 0.081 0.000 𝛾2 = 2 2.004 0.084 -0.004 

𝛼 = 0.6 0.598 0.006 0.002 𝛼 = 0.4 0.399 0.005 0.001 
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CHAPTER 3 

REGRESSION MODELS FOR MIS-REPORTED COUNTS 

 Underreporting is a widespread problem especially in survey research when 

respondents might provide inaccurate information either purposefully or due to forgetting 

and memory failure (Sellers, 2011).  Since basing the analysis on inaccurate information 

could have detrimental effects on associated inferences, several methodological 

approaches have been proposed to adjust for underreporting in count data.  

While such a framework is useful in capturing true number of events when only a 

fraction is reported, it is important to develop a more flexible model that covers a broader 

range of bias associated with misreporting (either under- or overreporting). To address 

this, Li et al. (Li, Trivedi, & Guo, 2003) considered a structural approach to model a 

potentially misreported count. Specifically, they assumed for the true count variable to 

follow a negative binomial regression while the reported count variable follows a Poisson 

regression. They estimated the model parameters through simulated maximum likelihood 

method. Pararai et al. (Pararai et al., 2010) used a similar approach but considered a 

generalized Poisson regression for the true counts instead of a negative binomial. They 

chose the standard maximum likelihood methods for their estimation process. 

We extended the ideas suggested by Li et al. (Li et al., 2003) and Pararai et al. 

(Pararai et al., 2010) and developed two mixture models to explain misreported counts
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when the true but unobserved counts follow either a Poisson or a generalized Poisson 

distribution. While the latter might seem similar to the generalized Poisson mixture 

model proposed by Pararai et al. (Pararai et al., 2010), we used simulated maximum 

likelihood method instead of the standard ML procedure for estimating model 

parameters. 

 Upcoming next, we will first discuss the simulated maximum likelihood method 

in Section 3.1 and then will introduce Poisson model for misreported counts and 

generalized Poisson model for misreported counts in sections 3.2 and 3.3 respectively.  

3.1 SIMULATED MAXIMUM LIKELIHOOD ESTIMATION 

 Simulation based methods have played an increasingly large role in various fields 

such as statistics and econometrics. Despite the fact that they are computationally 

expensive, the recent improvements in computer hardware and software have made 

simulation methods even more popular (Greene, 2003). The payoff has been in the form 

of methods for modeling complicated processes and solving estimation problems that did 

not have an analytic solution. Simulation methods are mainly used for explaining 

characteristics of random variables including test statistics, estimators or functions of 

estimators. When the statistical properties of such variables cannot be derived explicitly, 

it is often possible to infer them through sampling from their distribution (Smita, 2009). 

In more recent years simulation methods have been applied not only to make inferences 

about an estimator but also to ease the estimation process itself. 

Sometimes the likelihood function of the model involves complicated integrals 

that do not have a closed form solution. Generally, it is a result of missing an endogenous 
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variable or partially observing one that a non-tractable integral appears (Arias & Cox, 

1999). In such cases simulation methods can be used to evaluate the unsolvable model 

within acceptable degrees of approximation. The idea behind this is that the integrals of 

interest are probabilities of a specific event in a random process. So, by simulating that 

random process, the empirical probability of the event can be used as an approximation to 

the value of the intractable integral we are interested in (Lerman & Manski, 1981). This 

idea has been labeled as probability simulation method in the literature. In fact, the 

method of simulated likelihood is essentially a classical sampling theory rather than being 

a tool for computing high dimensional integrals.  

Gouriéroux and Manfort have provided detailed discussion of the SML method in 

their book (Gourieroux, Gourieroux, Monfort, & Monfort, 1996). Here, I briefly review 

the method so that I can later use it for estimation purposes.   

To illustrate and begin the development of simulated maximum likelihood (SML) 

estimator, we consider 𝜃 to be the parameter of interest which we wish to estimate 

through standard ML 

 𝜃𝑀𝐿𝐸 = arg max𝜃 ∑ log 𝑓(𝑦𝑖|𝑥𝑖, 𝜃)

𝑛

𝑖=1

 (3.1) 

Suppose 𝑓(𝑦𝑖|𝑥𝑖, 𝜃), the conditional pdf of 𝑌, has an intractable form. Suppose we have 

at our disposal an unbiased simulator 𝑓(𝑦𝑖, 𝑥𝑖, 𝑢, 𝜃) such that 

 𝐸𝑢 (𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢; 𝜃)|𝑥𝑖, 𝑦𝑖) = 𝑓(𝑦𝑖|𝑥𝑖; 𝜃) (3.2) 

where 𝑢 is an auxiliary variable with a known distribution. Then for each 𝑖, 𝑖 = 1, … , 𝑛, 

one may have 𝑆 independent random draws 𝑢𝑖
𝑠, 𝑠 = 1, … , 𝑆 from a known density by  
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which 𝑢𝑖
𝑠 are distributed. An SML estimator of 𝜃 can be defined as 

 𝜃𝑠,𝑛 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜃 ∑ 𝑙𝑜𝑔 [
1

𝑆
 ∑ 𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢𝑖

𝑠;  𝜃)

𝑆

𝑠=1

]

𝑛

𝑖=1

 (3.3) 

The asymptotic properties of the SML estimator can be evaluated under two 

circumstances   

i. When 𝑆, the number of random draws from the auxiliary variable 𝑢, is fixed. 

Let 𝑆 = 1, then if 𝑛  goes to infinity, we have 

lim
𝑛→∞

1

𝑛
∑ log 𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢𝑖

𝑠;  𝜃) =

𝑛

𝑖=1

 

 𝐸 ∫ log 𝑓(𝑦,  𝑥,  𝑢;  𝜃) 𝑔(𝑢)𝑑𝑢 (3.4) 

where 𝑔 is the pdf of 𝑢. Based on the definition, 𝑓(𝑦,  𝑥,  𝑢;  𝜃) is an unbiased 

simulator of 𝑓. However, in general, log 𝑓(𝑦,  𝑥,  𝑢;  𝜃) is not an unbiased 

simulator for log 𝑓. So, the result of maximizing (3.4) would not be equal to 

the true value of the parameter 𝜃 which is the solution to  

max𝜃  𝐸 log 𝑓(𝑦|𝑥; 𝜃)  

Thus, when 𝑆 is fixed, the SML estimator is not consistent. 

ii. When 𝑆 and 𝑛 both goes to infinity 

lim
𝑆,𝑛→∞

1

𝑛
∑ log [

1

𝑆
∑ 𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢𝑖

𝑠;  𝜃)

𝑆

𝑠=1

]

𝑛

𝑖=1

 

= lim
𝑛→∞

1

𝑛
∑ log [∫ 𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢;  𝜃)𝑔(𝑢)𝑑𝑢]

𝑛

𝑖=1

 

= 𝐸 log [∫ 𝑓(𝑦𝑖,  𝑥𝑖 ,  𝑢;  𝜃)𝑔(𝑢)𝑑𝑢] 
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= 𝐸 log 𝑓(𝑦𝑖,  𝑥𝑖;  𝜃) 

The last equation resulted owing to the fact that 𝑓 is an unbiased simulator of 

𝑓. Thus, if 𝑛 and 𝑆 both go to infinity the SML estimator would be consistent. 

It has also been proved by Gouriéroux and Manfort (Gourieroux et al., 1996) that if 

𝑆, 𝑛→∞ and √𝑛 𝑆⁄ → 0, then the SML estimator is asymptotically equivalent to the ML 

estimator. 

An important step toward getting an SML estimator is finding an unbiased 

simulator, 𝑓. The accomplishment of this step largely depends on the form of the function 

𝑓. In situations where the conditional pdf has an integral form 

 𝑓(𝑦𝑖|𝑥𝑖; 𝜃) = ∫ 𝑓∗(𝑦𝑖|𝑥𝑖; 𝑢; 𝜃)𝑔(𝑢)𝑑𝑢 (3.5) 

It is possible to introduce the simulator 

𝑓(𝑦, 𝑥, 𝑢; 𝜃) = 𝑓∗(𝑦|𝑥; 𝑢; 𝜃) 

Where 𝑢 has a distribution with pdf 𝑔. 

In cases where drawing from the target distribution 𝑔(𝑢) appears to be impossible or with 

hardship, importance sampling can be used to draw from a more convenient distribution.  

Let 𝜑 be an importance function with the same support as g, such that 

𝜑 > 0,  ∫ 𝜑(𝑢)𝑑𝑢 = 1 

Without loss of generality we can rewrite 𝑓 as 

𝑓(𝑦𝑖|𝑥𝑖; 𝜃) = ∫ 𝑓∗(𝑦𝑖|𝑥𝑖; 𝑢; 𝜃)𝑔(𝑢)
𝜑(𝑢)

𝜑(𝑢)
𝑑𝑢 = 

 𝐸𝑢 [𝑓∗(𝑦|𝑥; 𝑢; 𝜃)
𝑔(𝑢)

𝜑(𝑢)
] (3.6) 
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Now we can introduce the simulator 

 𝑓(𝑦, 𝑥, 𝑢; 𝜃) = 𝑓∗(𝑦|𝑥; 𝑢; 𝜃)
𝑔(𝑢)

𝜑(𝑢)
 (3.7) 

where 𝑢 has a distribution with pdf 𝜑. 

3.2 POISSON MODEL FOR MISREPORTED COUNTS 

One of the concerns in regression modeling including count outcomes is getting 

biased estimates for the parameters. That concern would be even greater when the count 

being studied are likely to be mismeasured or misreported (Bennett, 2011). Misreporting 

can emerge in the form of counts being inflated (overreporting) or lessened 

(underreporting). Ignoring the misreporting pattern in count data can give rise to bias in 

the estimation of model parameters. While considerable effort has been made to promote 

count models in a way they can capture underreporting, less attention has been paid to 

developing a more flexible class of models that can adjust for a broader range of bias in 

reported counts.  

In this section, we introduce a Poisson model that can be used in the presence of 

either underreporting, overreporting or even correctly reporting. 

The main assumption is that the number of counts we observe is the result of two 

consecutive processes. The first process is the one taking care of the accurate counts 

while the second one is responsible for introducing underreporting or overreporting.  

The construction of the model can be described as follows: 

i. The true number of events, 𝑦𝑖
∗ , 𝑖 = 1, … , 𝑛, follows a Poisson distribution 

with mean 𝜆𝑖 
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 𝑓(𝑦𝑖
∗) =

𝑒−𝜆𝑖  𝜆𝑖

𝑦𝑖
∗

𝑦𝑖
∗!

, 𝑦𝑖
∗ = 0,1,2, … (3.8) 

 𝜆𝑖 = exp(𝒙𝑖𝜸) (3.9) 

where 𝒙 is a row-vector of explanatory variables containing information about 

individual’s characteristics and 𝜸 is the vector of unknown parameters related 

to marginal means of the true but unobserved counts. 

ii. If 𝑦𝑖
∗, the true number of events, is zero, the observed counts are either 

correctly reported as zero or they are overreported to some positive numbers. 

Since Poisson distribution is a common pattern for non-negative valued data, 

we assumed for the observed counts, 𝑦𝑖, to be Poisson distributed with mean 

𝜇𝑖, given that the actual number of events is zero. 

 𝑓(𝑦𝑖|𝑦𝑖
∗ = 0) =

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1,2, … (3.10) 

 𝜇𝑖 = exp(𝒛𝑖𝜹) (3.11) 

where 𝒛 is a set of covariates believed to be in relation with the conditional 

mean of the observed counts and 𝜹 is a vector of unknown parameters. While 

the value of 𝜇 can be any non-negative integer, we expect it to be zero on 

average. 

iii. If the actual number of events is 𝑦𝑖
∗ where 𝑦𝑖

∗ > 0, then the reported counts 

can be either greater than 𝑦𝑖
∗ (overreporting) or lower than 𝑦𝑖

∗ 

(underreporting). To model such a bias we assume for the observed counts 𝑦𝑖, 

to follow Poisson distribution with mean 𝑦𝑖
∗𝜂𝑖 
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 𝑓(𝑦𝑖|𝑦𝑖
∗ > 0) =

𝑒−𝑦𝑖
∗𝜂𝑖 (𝑦𝑖

∗𝜂𝑖)
𝑦𝑖

𝑦𝑖!
 , 𝑦𝑖 = 0,1,2, … (3.12) 

 𝜂𝑖 = exp(𝒛𝑖𝜷) (3.13) 

Where 𝒛 is some exploratory variables related to the conditional mean of the 

observed counts, given the true counts and 𝜷 is a vector of unknown 

parameters. If 𝜂 = 1, the counts are correctly reported. When 𝜂 > 1, the 

events reported are higher than the actual counts and when 𝜂 < 1,  only a 

fraction of the actual events are reported.  

Thus, the structure of the model allows us accommodate both underreporting and 

overreporting. The aim is to use the information from the observed number of events 𝑦 

and external variables 𝒙 and 𝒛 to estimate the parameters 𝜸, 𝜹 and 𝜷. Combining the 

assumptions (i)-(iii) we can write the probability mass function of the observed counts as 

𝑓(𝑦𝑖|𝒙𝑖 , 𝒛𝑖, 𝜸, 𝜹, 𝜷) = ∑ 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜹, 𝜷)

∞

𝑦𝑖
∗=0

𝑃𝑟(𝑦𝑖
∗|𝒙𝑖 ,  𝜸) 

= 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗ = 0,  𝒛𝑖 , 𝜹, 𝜷) 𝑃𝑟(𝑦𝑖

∗ = 0|𝒙𝑖, 𝜸) + ∑ 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜹, 𝜷)

∞

𝑦𝑖
∗=1

𝑃𝑟(𝑦𝑖
∗|𝒙𝑖 ,  𝜸) 

 
=

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖 !
 ∙  𝑒−𝜆𝑖 + ∑

𝑒−𝑦𝑖
∗𝜂𝑖  (𝑦𝑖

∗𝜂𝑖)
𝑦𝑖

𝑦𝑖 !
 ∙  

𝑒−𝜆𝑖  𝜆𝑖
𝑦𝑖

∗

𝑦𝑖
∗ !

∞

𝑦𝑖
∗=1

 
(3.14) 

Now that we have the likelihood function for the ith individual at hand, we can use 

some maximization method to estimate the parameters of interest. However, due to the 

presence of the infinite series in (3.14), the likelihood function does not have a closed 

form solution. As a possible remedy, one might consider replacing the upper limit of the 

sum with a relatively large cut point assuming that the remainder of the series becomes 
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negligible from that point forward. According to Li et al. (2003), “such a method, 

however, results in inconsistent estimates due to the truncation of the true likelihood 

function. In addition, it is an ad hoc method of choosing the truncation point”. 

 As an alternative, we use simulated maximum likelihood discussed in Section 3.1 

for estimating the parameters of our model. To that goal, the first step would be finding 

an unbiased simulator for the likelihood function (3.14). Introducing an importance 

function 𝜑 to the likelihood, we can rewrite (3.14) as 

𝑓(𝑦𝑖|𝒙𝑖, 𝒛𝑖, 𝜸, 𝜹, 𝜷) =
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖  !
 ∙  𝑒−𝜆𝑖 + ∑

𝑒−𝑦𝑖
∗𝜂𝑖  (𝑦𝑖

∗𝜂𝑖)𝑦𝑖

𝑦𝑖  !
 ∙  

𝑒−𝜆𝑖  𝜆𝑖
𝑦𝑖

∗

𝑦𝑖
∗ !

∞

𝑦𝑖
∗=1

 

=
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖 !
∙  𝑒−𝜆𝑖 + ∑

𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖 , 𝜷) 𝑃𝑟(𝑦𝑖

∗|𝒙𝑖, 𝜸) 𝜑(𝑦𝑖
∗|𝒙𝑖)  

𝜑(𝑦𝑖
∗|𝒙𝑖)

∞

𝑦𝑖
∗=1

 

 = 𝐸𝑦𝑖
∗ [ 

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖 !
∙  𝑒−𝜆𝑖 +

𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜷) 𝑃𝑟(𝑦𝑖

∗|𝒙𝑖, 𝜸)  

𝜑(𝑦𝑖
∗|𝒙𝑖)

] (3.15) 

 Therefore, an unbiased simulator for 𝑓 can be chosen as  

where 𝑢 is an auxiliary variable that only takes integer values greater than or equal to one 

and its probability mass function is represented as 𝜑(𝑢|𝒙𝑖). Any distribution that satisfies 

this condition can serve as the importance function. We selected 𝑢 from a zero truncated 

Poisson distribution with mean Δ 

 𝑓(𝑦𝑖|𝒙𝑖, 𝒛𝑖 , 𝜸, 𝜹, 𝜷) =
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖  !
∙  𝑒−𝜆𝑖 +

𝑃𝑟(𝑦𝑖|𝑢,  𝒛𝑖, 𝜷) 𝑃𝑟(𝑢|𝒙𝑖, 𝜸)  

𝜑(𝑢|𝒙𝑖)
 (3.16) 

 𝜑(𝑢𝑖|𝒙𝑖) =
𝑒−Δ𝑖Δ𝑖

𝑢𝑖

𝑢𝑖! (1 − 𝑒−Δ𝑖)
 , 𝑢𝑖 = 1,2,3, … (3.17) 
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where Δ can be estimated by fitting a Poisson model to the non-zero observations in 𝑦, 

using the explanatory variables 𝒙. 

Thus, we can rewrite the likelihood function (3.14) using the suggested 𝑓 as 

 𝐿(𝑦𝑖) ≈
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖 !
∙  𝑒−𝜆𝑖 +

1

𝑆
∑

𝑒−𝜂𝑖𝑢𝑖
𝑠
 (𝜂𝑖𝑢𝑖

𝑠)𝑦𝑖

𝑦𝑖  !  ∙
𝑒−𝜆𝑖  𝜆𝑖

𝑢𝑖
𝑠

𝑢𝑖
𝑠 !

𝑒−∆𝑖  ∆𝑖
𝑢𝑖

𝑠

𝑢𝑖
𝑠 ! (1 − 𝑒−∆𝑖)

𝑆

𝑠=1

 (3.18) 

In summary, simulating the likelihood function (3.14) consists of the following steps 

i. Regressing the non-zero observations in 𝑦 on 𝒙 through Poisson model and 

estimating Δ 

ii. For each 𝑦𝑖, getting 𝑆 random draws, 𝑢𝑖
𝑠, from a zero truncated Poisson 

distribution with mean Δ̂ 

iii. For each 𝑢𝑖
𝑠, evaluating the summand in (3.19) and averaging over those 

values 

iv. Calculating the likelihood 

Having simulated the likelihood function, we can estimate the parameters 𝜸, 𝜹 and 

𝜷 through maximization methods.  

3.3 SIMULATION STUDY FOR POISSON MODEL FOR MISREPORTED COUNTS 

Unlike the simulation studies discussed in previous sections, here I simulated just 

one dataset. The reason was that getting SML estimates requires generating random 

draws from the target distribution for each observation. To avoid the long processing 

time, I chose a simulation size of 1.  

In order to assess the performance of the model we synthesized a data set of size  
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10,000 observations with variables (𝑥1, 𝑥2)  defining the true counts and (𝑧1, 𝑧2) relating 

to misreporting. 𝑥1 were generated from a uniform distribution and 𝑥2 were from 

binomial (4,0.2). 𝑧1 was assumed to be from a Bernoulli distribution with p=0.3 and 𝑧2 

were generated from standard normal distribution. The variable containing the true 

counts, 𝑦∗, were produced by generating random numbers from a Poisson distribution 

with mean exp(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2) where 𝛾0 = 1, 𝛾1 = 1.5 and 𝛾2 = −0.5. The observed 

counts, 𝑦, were then created based on the variable 𝑦∗. For those observations where the 

true number of events were zero, 𝑦 were generated from a Poisson distribution with mean 

exp(𝛿1𝑧1 + 𝛿2𝑧2) where 𝛿1 = −1.8 and 𝛿2 = −1.1. The observed counts, 𝑦, for the rest 

of the dataset were generated from Poisson distribution with mean [𝑦∗ × exp(𝛽1𝑧1 +

𝛽2𝑧2)] where 𝛽1 = 0.5 and 𝛽2 = 0.2. Once all variables were created, we fit first a 

standard Poisson regression model and then a Poisson regression model for underreported 

counts to the synthesized data. For the first simulation scenario we used full models and 

for the second we considered models with no intercept. The results are summarized in 

Tables (3-1) and (3-2). 

While the main parameters were well estimated from both models, the results 

from the miscounted Poisson model were more accurate. We were also able to get some 

information about the sources of underreporting and overreporting through the 

miscounted model which is something that clearly the standard Poisson regression cannot 

provide. 

The results from second simulation scenario suggests that even if we apply the 

misreporting model in situations where the counts are fully observed, we would still get 

reliable estimates. Table (3-2) shows that the parameters related to misreporting, 
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𝛿1, 𝛿2, 𝛽1, 𝛽2, are all insignificant, due to the large estimated standard errors. Thus, 

although we expect to get better estimates using the standard Poisson regression when 

there are no reporting errors, applying the miscounted Poisson model would still provide 

acceptable results. 

Table 3.1 Comparing standard Poisson to Poisson model for misreported counts, 

 first simulation scenario 

 Poisson model 
Poisson model for misreported 

counts 

True value 
Estimated 

Coefficient 

Standard 

Error 
Bias 

Estimated 

Coefficient 

Standard 

Error 
Bias 

𝛾0 = 1 1.304 0.034 -0.304 1.069 0.056 -0.069 

𝛾1 = 1.5 1.433 0.048 0.067 1.478 0.075 0.022 

𝛾2 = −0.5 -0.540 0.019 0.04 -0.539 0.030 0.039 

𝛿1 = −1.8 - - - -1.363 1.031 -0.437 

𝛿2 = −1.1 - - - -0.759 0.251 -0.341 

𝛽1 = 0.5 - - - 0.504 0.039 0.004 

𝛽2 = 0.2 - - - 0.182 0.0201 0.018 

 

 

Table 3.2 Comparing Standard Poisson to Poisson model for misreported counts, second 

simulation scenario 

 Poisson model 
Poisson model for misreported 

counts 

True value 
Estimated 

Coefficient 

Standard 

Error 
Bias 

Estimated 

Coefficient 

Standard 

Error 
Bias 

𝛾1 = 1.5 1.629 0.012 -0.129 1.511 0.021 -0.011 

𝛾2 = −0.5 -0.199 0.008 -0.301 -0.501 0.017 0.001 

𝛿1 = −1.8 - -  -1.743 0.111 -0.057 

𝛿2 = −1.1 - -  -1.110 0.012 0.01 

𝛽1 = 0.5 - -  0.464 0.019 0.036 

𝛽2 = 0.2 - -  0.197 0.010 0.003 
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3.4 GENERALIZED POISSON MODEL FOR MISREPORTED COUNTS 

Negative binomial and generalized Poisson regressions are popular alternatives to 

Poisson regression. In Section 3.1 we introduced the Poisson model for misreported 

counts. Li et al. (2003) has also suggested a negative Binomial model that can 

accommodate both under/overreported events. Now it is natural to derive an extension to 

to the generalized Poisson model so that it can adjust for misreported counts along the 

same way as Poisson and negative binomial regression. 

Similar to Poisson model for underreported counts, the construction of the 

generalized Poisson model for underreporting is based on the following assumptions 

iv. The true number of events, 𝑦𝑖
∗ , 𝑖 = 1, … , 𝑛, follows a generalized Poisson  

distribution with mean 𝜆𝑖 and dispersion parameter 𝛼 

 𝑓(𝑦𝑖
∗) = (

𝜆𝑖

1 + 𝛼𝜆𝑖
)

𝑦𝑖
∗

(1 + 𝛼𝑦𝑖
∗)𝑦𝑖

∗−1

𝑦𝑖
∗!

exp [
−𝜆𝑖(1 + 𝛼𝑦𝑖

∗)

1 + 𝛼𝜆𝑖
] , 𝑦𝑖

∗ = 0,1, … (3.20) 

 𝜆𝑖 = exp(𝒙𝑖𝜸) (3.21) 

where 𝒙 is some explanatory variables containing information about 

individual’s characteristics and 𝜸 is the vector of unknown parameters related 

to marginal means of the true but unobserved counts. 

v. If 𝑦𝑖
∗, the true number of events, is zero, the observed counts are either 

correctly reported as zero or they are overreported to some positive numbers. 

Since Poisson distribution is a common pattern for non-negative valued data, 

we assumed for the observed counts, 𝑦𝑖, to be Poisson distributed with mean 

𝜇𝑖, given that the actual number of events is zero. 
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 𝑓(𝑦𝑖|𝑦𝑖
∗ = 0) =

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1,2, … (3.22) 

 𝜇𝑖 = exp(𝒛𝑖𝜹) (3.23) 

where 𝒛 is a set of covariates believed to be in relation with conditional mean 

of the observed counts and 𝜹 is a vector of unknown parameters. While the 

value of 𝜇 can be any non-negative integer, we expect it to be zero on average. 

vi. If the actual number of events is 𝑦𝑖
∗ where 𝑦𝑖

∗ > 0, then the reported counts 

can be either greater than 𝑦𝑖
∗ (overreporting) or lower than 𝑦𝑖

∗ 

(underreporting). To model such a bias we assume for the observed counts 𝑦𝑖, 

to follow Poisson distribution with mean 𝑦𝑖
∗𝜂𝑖 

 𝑓(𝑦𝑖|𝑦𝑖
∗ > 0) =

𝑒−𝑦𝑖
∗𝜂𝑖 (𝑦𝑖

∗𝜂𝑖)
𝑦𝑖

𝑦𝑖!
 , 𝑦𝑖 = 0,1,2, … (3.24) 

 𝜂𝑖 = exp(𝒛𝑖𝜷) (3.25) 

Where 𝒛 is some exploratory variables related to the conditional mean of the 

observed counts, given the true counts and 𝜷 is a vector of unknown 

parameters. If 𝜂 = 1, the counts are correctly reported. When 𝜂 > 1, the 

events reported are higher than the actual counts and when 𝜂 < 1,  only a 

fraction of the actual events are reported.  

Thus, the structure of the model let us to accommodate for both underreporting 

and overreporting. The goal is to estimate the parameters 𝜸, 𝜹 and 𝜷, using the 

information from the observed number of events 𝑦 and external variables 𝒙 and 𝒛. 

Combining the assumptions (i)-(iii) we can write the probability mass function of the 

observed counts as 
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𝑓(𝑦𝑖|𝒙𝑖 , 𝒛𝑖, 𝜸, 𝜹, 𝜷) = ∑ 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜹, 𝜷)

∞

𝑦𝑖
∗=0

𝑃𝑟(𝑦𝑖
∗|𝒙𝑖 ,  𝜸) 

= 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗ = 0,  𝒛𝑖 , 𝜹, 𝜷) 𝑃𝑟(𝑦𝑖

∗ = 0|𝒙𝑖, 𝜸) + ∑ 𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜹, 𝜷)

∞

𝑦𝑖
∗=1

𝑃𝑟(𝑦𝑖
∗|𝒙𝑖 ,  𝜸) 

 

=
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖 !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
)

+ ∑
𝑒−𝑦𝑖

∗𝜂𝑖  (𝑦𝑖
∗𝜂𝑖)

𝑦𝑖

𝑦𝑖 !
(

𝜆𝑖

1 + 𝛼𝜆𝑖
)

𝑦𝑖
∗

(1 + 𝛼𝑦𝑖
∗)𝑦𝑖

∗−1

𝑦𝑖
∗!

exp [
−𝜆𝑖(1 + 𝛼𝑦𝑖

∗)

1 + 𝛼𝜆𝑖
]

∞

𝑦𝑖
∗=1

 

(3.26) 

Generally, once we develop the likelihood function, we would use some 

maximization method to estimate the parameters of interest. However, similar to section 

3.2, due to the presence of infinite series in (3.14), the likelihood function does not have a 

closed form solution.  

 As an alternative, we use simulated maximum likelihood discussed in section 3.1 

for estimating the parameters 𝜸, 𝜹 and 𝜷. To reach that goal, the first step is to find an 

unbiased simulator for the likelihood function (3.26). If we introduce an importance 

function 𝜑 to the likelihood, we can rewrite (3.26) as 

𝑓(𝑦𝑖|𝒙𝑖, 𝒛𝑖, 𝜸, 𝜹, 𝜷) =
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖  !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
) + 

∑
𝑒−𝑦𝑖

∗𝜂𝑖  (𝑦𝑖
∗𝜂𝑖)

𝑦𝑖

𝑦𝑖 !
(

𝜆𝑖

1 + 𝛼𝜆𝑖
)

𝑦𝑖
∗

(1 + 𝛼𝑦𝑖
∗)𝑦𝑖

∗−1

𝑦𝑖
∗!

exp [
−𝜆𝑖(1 + 𝛼𝑦𝑖

∗)

1 + 𝛼𝜆𝑖
]

∞

𝑦𝑖
∗=1

 

=
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖 !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
) + ∑

𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜷) 𝑃𝑟(𝑦𝑖

∗|𝒙𝑖, 𝜸) 𝜑(𝑦𝑖
∗|𝒙𝑖)  

𝜑(𝑦𝑖
∗|𝒙𝑖)

∞

𝑦𝑖
∗=1
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 = 𝐸𝑦𝑖
∗ [ 

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖  !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
) +

𝑃𝑟(𝑦𝑖|𝑦𝑖
∗,  𝒛𝑖, 𝜷) 𝑃𝑟(𝑦𝑖

∗|𝒙𝑖, 𝜸)  

𝜑(𝑦𝑖
∗|𝒙𝑖)

] (3.27) 

Therefore, an unbiased simulator for 𝑓 can be chosen as  

 

𝑓(𝑦𝑖|𝒙𝑖, 𝒛𝑖, 𝜸, 𝜹, 𝜷) = 

𝑒−𝜇𝑖  𝜇𝑖
𝑦𝑖

𝑦𝑖  !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
) +

Pr(𝑦𝑖|𝑢,  𝒛𝑖, 𝜷) Pr(𝑢|𝒙𝑖, 𝜸)  

𝜑(𝑢|𝒙𝑖)
 

(3.28) 

where 𝑢 is an auxiliary variable that only takes integer values greater than or equal to one 

and its probability mass function is represented as 𝜑(𝑢|𝒙𝑖). Any distribution that satisfy 

this condition can serve as the importance function. We selected 𝑢 from a zero truncated 

generalized Poisson distribution with mean Δ and dispersion parameter 휀 

 

𝜑(𝑢𝑖|𝒙𝑖) = (
∆𝑖

1 + 휀∆𝑖
)

𝑢𝑖

× 

(1 + 휀𝑢𝑖)𝑢𝑖−1

𝑢𝑖!  [1 − 𝑒𝑥𝑝 (
−∆𝑖

1 + 휀∆𝑖
)]

exp [
−∆𝑖(1 + 휀𝑢𝑖)

1 + 휀∆𝑖
] , 𝑢𝑖 = 1,2,3, … 

(3.29) 

where Δ can be estimated by fitting a generalized Poisson model to the non-zero 

observations in 𝑦, using the explanatory variables 𝒙. Thus, we can rewrite the likelihood 

function (3.26) using the suggested 𝑓 as 

 

𝐿(𝑦𝑖) ≈
𝑒−𝜇𝑖  𝜇𝑖

𝑦𝑖

𝑦𝑖 !
 (

−𝜆𝑖

1 + 𝛼𝜆𝑖
) + 

1

𝑆
∑

𝑒−𝜂𝑖𝑢𝑖
𝑠
 (𝜂𝑖𝑢𝑖

𝑠)𝑦𝑖

𝑦𝑖 !
 ∙ (

𝜆𝑖

1 + 𝛼𝜆𝑖
)

𝑢𝑖
𝑠

(1 + 𝛼𝑢𝑖
𝑠)𝑢𝑖

𝑠−1

𝑢𝑖
𝑠!

exp [
−𝜆𝑖(1 + 𝛼𝑢𝑖

𝑠)
1 + 𝛼𝜆𝑖

]

(
∆𝑖

1 + 휀∆𝑖
)

𝑢𝑖

.
(1 + 휀𝑢𝑖)𝑢𝑖−1

𝑢𝑖!  [1 − 𝑒𝑥𝑝 (
−∆𝑖

1 + 휀∆𝑖
)]

exp [
−∆𝑖(1 + 휀𝑢𝑖)

1 + 휀∆𝑖
]

𝑆

𝑠=1

 

(3.30) 

In summary, simulating the likelihood function (3.14) consists of the following steps 
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v. Regressing the non-zero observations in 𝑦 on 𝒙 through generalized Poisson 

model and estimating Δ and 휀 

vi. For each 𝑦𝑖, getting 𝑆 random draws, 𝑢𝑖
𝑠, from a zero truncated generalized 

Poisson distribution with mean Δ̂ and dispersion parameter 휀̂ 

vii. For each 𝑢𝑖
𝑠, evaluating the summand in (3.31) and averaging over those 

values 

viii. Calculating the likelihood 

Having simulated the likelihood function, we can estimate the parameters 𝜸, 𝜹 and 𝜷 

through maximization methods.  

3.4 SIMULATION STUDY FOR GENERALIZED POISSON MODEL FOR 

MISREPORTED COUNTS 

In order to assess the performance of the model I synthesized a data set of size 

1000 observations with variables (𝑥1, 𝑥2)  defining the true counts and (𝑧1, 𝑧2) relating to 

misreporting. 𝑥1 were generated from a uniform distribution on the interval (0,3) and 𝑥2 

were from binomial (4,0.2). 𝑧1 is assumed to be from a uniform distribution on the 

interval (0,1) and 𝑧2 were generated from a binomial distribution with n=5 and p=0.2. 

The variable containing the true counts, 𝑦∗ were produced by generating random 

numbers from a generalized Poisson distribution with mean exp(𝛾0 + 𝛾1𝑥1 + 𝛾2𝑥2) and 

dispersion parameter 𝛼 where 𝛾0 = 0.2, 𝛾1 = 0.4, 𝛾2 = −1.5 and 𝛼 = 0.45. The 

observed counts, 𝑦, were then created based on the variable 𝑦∗. For those observations 

where the true number of events were zero, 𝑦 were generated from a Poisson distribution 

with mean exp(𝛿1𝑧1 + 𝛿2𝑧2) where 𝛿1 = −2.7 and 𝛿2 = 0.4. The observed counts, 𝑦, for 
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the rest of the dataset were generated from Poisson distribution with mean [𝑦∗ ×

exp(𝛽1𝑧1 + 𝛽2𝑧2)] where 𝛽1 = 0.1 and 𝛽2 = 0.3. Once all variables were created, we fit 

first a standard generalized Poisson regression (GPR) model and then a generalized 

Poisson regression model for misreported counts (GPRM) to the synthesized data.  

For getting the SML estimates, we drew 100 observations from zero truncated 

generalized Poisson distribution with mean and dispersion parameter estimated from the 

naive model. 

For the second simulation scenario, we considered a situation where the counts 

were fully observed. Our aim was to observe the performance of the model when the 

number of events were all correctly reported, i.e. 𝑦 = 𝑦∗. We used the same variable 

layouts for this part. The results are summarized in Tables (3-3) and (3-4). 

Comparing the true value of the parameters with those estimated from the GP 

model reveals that when there exist patterns of overreporting or underreporting in the 

data, applying the GP model might result in biased estimates.  

Unlike the GP mode, the estimates from the generalized Poisson model for 

misreported counts were more accurate. The GP model for misreporting were also able to 

identify the variables contributing to underreporting and overreporting separately.  

For the second simulation scenario, where the counts were fully observed, both 

models provided good estimates of the main parameters, 𝛾0, 𝛾1 and 𝛾2. Moreover, the 

parameters explaining the magnitude of misreporting introduced by variables, (𝑧1, 𝑧2), 

are either very small or insignificant due to the large standard errors. This suggests that, if  
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Table 3.3 Comparing generalized Poisson to generalized Poisson model for 

underreported counts, first simulation scenario 

 Generalized Poisson model 
Generalized Poisson model for 

misreported counts 

True value 
Estimated 

Coefficient 

Standard 

Error 
Bias 

Estimated 

Coefficient 

Standard 

Error 
Bias 

𝛾0 = 0.2 0.744 0.099 -0.544 0.127 0.163 0.073 

𝛾1 = 0.4 0.257 0.046 0.143 0.457 0.066 -0.057 

𝛾2 = −1.5 -0.636 0.058 -0.864 -1.388 0.138 -0.112 

𝛼 = 0.45 0.581 0.019 -0.131 0.465 0.038 -0.015 

𝛿1 = −2.7 - - - -2.975 0.314 0.275 

𝛿2 = 0.4 - - - 0.388 0.061 0.012 

𝛽1 = 0.1 - - - -0.170 0.150 0.27 

𝛽2 = 0.3 - - - 0.387 0.055 -0.087 

 

Table 3.4 Comparing generalized Poisson to generalized Poisson model for 

underreported counts, second simulation scenario 

 Generalized Poisson model 
Generalized Poisson model for 

misreported counts 

True value 
Estimated 

Coefficient 

Standard 

Error 
Bias 

Estimated 

Coefficient 

Standard 

Error 
Bias 

𝛾0 = 0.2 0.119 0.120 0.081 0.143 0.057 0.057 

𝛾1 = 0.4 0.430 0.056 -0.030 0.430 0.136 -0.030 

𝛾2 = −1.5 -1.519 0.098 0.019 -1.504 0.100 0.004 

𝛼 = 0.45 0.474 0.025 -0.024 0.310 0.044 0.140 

𝛿1 = −2.7 - - - -24.405 13.124 21.705 

𝛿2 = 0.4 - - - -19.79 8995.6 20.190 

𝛽1 = 0.1 - - - -0.192 0.139 0.292 

𝛽2 = 0.3 - - - 0.068 0.050 0.232 
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we do not know whether there are reporting biases in the data and still use the GP 

misreporting model, the results would still not be off. Clearly, however, we expect for the 

GP model to provide better estimates in that situation.
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CHAPTER 4  

APPLICATION TO EBAN STUDY 

4.1 INTRODUCTION 

Around 1.1 million people are living with HIV in the United States (CDC, 

2018b). While the size of the epidemic is relatively small compared to the country’s 

population, the disproportionate burden of the disease among certain minority groups has 

been of concern for years (Aral, Adimora, & Fenton, 2008; Control & Prevention, 2011). 

According to CDC, African Americans have the highest rate of HIV when compared to 

other races. In 2016, African Americans accounted for 44% of HIV diagnoses, though 

they comprise 12% of the U.S. population.  

“A number of challenges contribute to the higher rates of HIV infection among 

African Americans. The greater number of people living with HIV (prevalence) in 

African American communities and the tendency for African Americans to have sex with 

partners of the same race/ethnicity mean that African Americans face a greater risk of 

HIV infection. Some African American communities also experience higher rates of 

other sexually transmitted diseases (STDs) than other racial/ethnic communities in the 

United States. Having another STD can significantly increase a person’s chance of 

getting or transmitting HIV”(CDC, 2018a). 

In an attempt to determine whether an intervention method could be effective in 

reducing high risk behaviors among African Americans, an RCT with a focus on African
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American HIV serodiscordant heterosexual couples were conducted in 2007. The study 

individuals were recruited from 4 sites: Atlanta, Georgia; Los Angeles, California; New 

York, New York; and Philadelphia, Pennsylvania. Couples were eligible if they were 

both at least 18 years old and were aware of their partner’s HIV serostatus. Once 

eligibility were confirmed, couples were allocated to one of 2 interventions, the Eban 

HIV/STD risk reduction or the health promotion comparison. Data were collected at 4 

time points, baseline, right after intervention, 6 months post intervention and 12 months 

post intervention.  The detailed description of the study can be found elsewhere (El-

Bassel et al., 2010; Syndromes, 2008).  

In this dissertation, I am going to use responses 6 months after the intervention. 

The primary outcome is whether the couple had unprotected sexual activity during past 3 

months. Both partners responded to this question during an interview but here I am 

considering the male’s participant responses. We are interested to see if the intervention 

group has lower rate of unprotected intercourse acts and if there exists a pattern of 

underreporting/overreporting in individuals’ responses.  

4.2 METHODS 

For the first round of analysis we use the standard count models (Poisson, 

negative binomial and generalized Poisson regression) to get an estimate of the 

relationship between the number of unprotected sexual activities and the covariates of 

interest which includes treatment group, age, marital status, living with study partner, and 

having multiple concurrent partners. Next, we compare the fitted models and will choose 

the one with the lowest values of AIC and BIC for further analysis. Then, we will 

develop underreporting regression and misreporting regression models, based on the 
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model we selected in the previous step, to investigate any potential sources of 

overreporting or underreporting. Finally, we will compare the results from these models 

and will choose one of them for interpretation purposes. 

4.3 RESULTS 

 Of the 535 couples that were included in the study, 260 (48.59%) were allocated 

to the EBAN intervention group and 275 (51.44%) were allocated to health promotion 

intervention. The average age of male participants that were used for further analysis 

were 45.89 years old with standard deviation of 8.30.  While only 206 (38.50%) 

individuals were married, the majority were living with their study partner (61.30%).  

 Table (4-1) shows the results of fitting Poisson, negative binomial and generalized 

Poisson to the EBAN data. The estimation procedure did not converge for the generalized 

Poisson model, so we reported the estimates achieved after 100 iterations. The AIC and 

BIC are the highest for Poisson regression and the lowest for negative binomial 

regression. Thus, in the next step we fit extensions of the negative binomial model for 

underreported data and misreported data to investigate the potential errors in number of 

individuals diagnosed with ADRD. The results are summarized in Table (4-2). 

 The AIC and BIC of both models are very close to each other but since they are 

smaller for negative binomial underreporting model, we will focus on that model for 

further exploration of the results. 

The first panel describes the factors related to the actual number of times the 

participant reported having unprotected intercourse acts.  The constant is estimated to be 

2.78, suggesting that the baseline incidence rate is 16.11. The coefficient for being in the 
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EBAN intervention group is -0.684, which shows that the rate of unprotected sexual 

activities for those that have received behavioral interventions is 50% less than those who 

were part of the health promotion group.  

Table 4.1 Results from fitting Poisson, negative binomial and generalized Poisson 

regressions 

 Coeff. Std. Err. z p-value 

 Poisson model 

Constant 1.745 0.132 13.14 <0.001 

Treatment -0.702 0.041 -16.8 <0.001 

Age -0.017 0.002 -7.32 <0.001 

Marital status 0.122 0.039 3.13 0.002 

Living with study partner 1.339 0.078 17.16 <0.001 

Having other concurrent partners -0.811 0.101 -7.98 <0.001 

LL -4768.465        

AIC 9548.93    

BIC 9573.354 

 Negative binomial model 

Constant 1.467 0.823 1.78 0.075 

Treatment -0.710 0.273 -2.6 0.009 

Age -0.010 0.017 -0.58 0.565 

Marital status 0.129 0.282 0.46 0.646 

Living with study partner 1.319 0.335 3.93 <0.001 

Having other concurrent partners -1.070 0.426 -2.51 0.012 

𝛼 6.902 

LL -866.009        

AIC 1746.018    

BIC 1774.514 

 Generalized Poisson model* 

Constant 6.836 - - - 

Treatment -0.639 0.157 -4.06 <0.001 

Age -0.015 0.009 -1.6 0.111 

Marital status 0.012 0.156 0.08 0.934 

Living with study partner 0.575 0.214 2.68 0.007 

Having other concurrent partners -0.285 0.281 -1.02 0.310 

𝛼 -.993 

LL -887.389 

AIC 1786.78 

BIC 1811.204 

* Convergence was not achieved 
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Table 4.2 Results from fitting negative binomial model for underreporting and negative 

binomial model for misreporting 

  Coeff. Std. Err. z p-value 

  Negative binomial for 

underreporting 

 Constant 2.786 0.558 4.98 <0.001 

 Treatment -0.684 0.273 -2.5 0.012 

Underreporting      

 Age -0.033 0.018 -1.85 0.064 

 Marital status 0.059 0.818 0.07 0.942 

 Living with study partner 2.172 0.911 2.38 0.017 

 Having other concurrent 

partners 

-1.403 0.821 -1.71 0.088 

 𝛼 6.894 

 LL -865.851        

 AIC 1745.704    

 BIC 1774.199 

   

  Negative binomial model for 

misreporting 

 Constant 1.401 0.175 7.99 <0.001 

 Treatment -0.750 0.244 -3.07 0.002 

𝑝(𝑦|𝑦∗ = 0)      

 Age -0.102 0.031 -3.28 0.001 

 Marital status 0.649 1.084 0.6 0.549 

 Living with study partner 1.142 1.035 1.1 0.27 

 Having other concurrent 

partners 

-18.729 10185.1

7 

0 0.999 

𝑝(𝑦|𝑦∗ = 0)      

 Age -0.008 0.005 -1.63 0.103 

 Marital status 0.501 0.086 5.79 <0.001 

 Living with study partner 1.077 0.225 4.77 <0.001 

 Having other concurrent 

partners 

-0.836 0.291 -2.87 0.004 

 𝛼 5.64 

 LL -863.235 

 AIC 1748.47 

 BIC 1793.248 

 

The second panel explores the chances of someone reporting a smaller number 

when asked about the number of times he had unprotected sexual activities during last 3 
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months. A negative estimated coefficient for age suggests that younger people are more 

likely to underreport their high risk sexual behavior. Living with study partner, on the 

other hand seems to be highly correlated with a pattern of underreporting.  

4.4 CONCLUSION 

 The results confirmed that behavioral intervention can reduce HIV/sexually 

transmitted disease (STD) risk behaviors among African American HIV serodiscordant 

couples. Also, our model provided a good insight into how some factors like age and 

living with a partner might contribute to underreporting high risk behavior. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Data collection often involves reporting errors. Underreporting, a more common 

problem in counting systems, happens when the reporting of some events is not complete. 

As a consequence of underreporting, the mean of the observed counts is smaller than the 

true mean. Ignoring the underreporting pattern of count data could result in biased 

estimates of the effects of interest which ultimately leads to misleading inferences.  

Extensions of standard count data models (Poisson, negative binomial and 

generalized Poisson regression) have been proposed by various authors so that the 

underreporting patterns can also be captured. All these models assume a mixture of 

binomial distribution and some other distribution for counts. Basically, the binomial 

model presumes that for each event a random mechanism decides whether it is reported 

or not.  

A key assumption among the underreporting models is that the reporting 

probability is constant and identical for all events. However, in practice the reporting 

probability might change under different circumstances. Pararai et al. (2006) suggested 

using quasi binomial distribution II (QBD-II) instead of binomial distribution to reach 

that goal. They developed a generalized Poisson model applicable to underreporting 

events which does not rely on the constant probability assumption. Future research is
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needed to derive Poisson and negative binomial models for underreported counts which 

also allow for a changeable reporting probability. 

Although less common, overreporting is another problem that might affect 

counting systems. We proposed two models that are capable of capturing both 

underreporting and overreporting. In situations where the outcome of interest is over 

dispersed and also likely to be misreported, negative binomial regression for misreported 

counts can be used as an alternative to negative binomial regression. In other cases where 

the outcome of interest might be under- or overreported, and also the distribution of 

counts seems to be under dispersed, we can apply generalized Poisson regression instead 

of the standard GP model. 

Both proposed models enable us to determine how individual’s characteristics 

contribute to reporting bias. They also provide us a way to estimate the proportions of 

underreporting, overreporting and correctly reporting.
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